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a b s t r a c t

Researchers performing multi-site recordings are often interested in identifying the directionality of
functional connectivity and estimating lags between sites. Current techniques for determining direction-
ality require spike trains or involve multivariate autoregressive modeling. However, it is often difficult
to sample large numbers of spikes from multiple areas simultaneously, and modeling can be sensitive
to noise. A simple, model-independent method to estimate directionality and lag using local field poten-
tials (LFPs) would be of general interest. Here we describe such a method using the cross-correlation of
the instantaneous amplitudes of filtered LFPs. The method involves four steps. First, LFPs are band-pass
filtered; second, the instantaneous amplitude of the filtered signals is calculated; third, these amplitudes
are cross-correlated and the lag at which the cross-correlation peak occurs is determined; fourth, the
distribution of lags obtained is tested to determine if it differs from zero. This method was applied to
unctional connectivity
artial directed coherence

LFPs recorded from the ventral hippocampus and the medial prefrontal cortex in awake behaving mice.
The results demonstrate that the hippocampus leads the mPFC, in good agreement with the time lag
calculated from the phase locking of mPFC spikes to vHPC LFP oscillations in the same dataset. We also
compare the amplitude cross-correlation method to partial directed coherence, a commonly used mul-
tivariate autoregressive model-dependent method, and find that the former is more robust to the effects

est th
dire
of noise. These data sugg
valid method to study the

. Introduction

Recent advances in multi-site recording technology have
nabled researchers to sample local field potentials (LFPs) simul-
aneously from multiple brain regions (DeCoteau et al., 2007). A
ommon interest in such studies is to determine whether one brain
egion is leading or lagging relative to another, and to estimate
he time lag between putatively connected areas. Several groups
ave estimated the lag across brain areas using recordings of spike
rains. Most of these studies estimate directionality by calculat-

ng the cross-correlation of spike trains of two areas (Alonso and

artinez, 1998; Holdefer et al., 2000; Lindsey et al., 1992; Snider et
l., 1998). Other studies have used related approaches, such as cal-
ulating the cross-covariance of spike trains (Siapas et al., 2005), or
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at the cross-correlation of instantaneous amplitude of filtered LFPs is a
ction of flow of information across brain areas.

© 2010 Elsevier B.V. All rights reserved.

different methods, such as the computation of spike-triggered joint
histograms (Paz et al., 2009) or the change in phase-locking after
shifting the spikes relative to the LFP (Siapas et al., 2005). Although
such methods are effective, they are not applicable to studies that
record only LFPs. This situation is common, as often spike trains
cannot be sampled from multiple areas, or firing rates are too low
to determine the directionality of functional connectivity across
regions. Recording LFPs in areas with low firing rates can be advan-
tageous, as LFPs can be sampled continuously, while spikes can
occur infrequently and irregularly. LFP-based methods may there-
fore yield higher temporal resolution and greater statistical power
than spike-based methods.

Existing methods such as Granger causality (Cadotte et al., 2010;
Gregoriou et al., 2009; Popa et al., 2010) and partial directed coher-
ence (PDC) (Astolfi et al., 2006; Baccala and Sameshima, 2001;

Taxidis et al., 2010; Winterhalder et al., 2005) are able to estimate
the directionality of functional connectivity using only LFPs. How-
ever, these methods are mathematically complex (Gourevitch et al.,
2006), relying on multivariate models with a large number of free
parameters, obscuring the intuitive understanding of what these

dx.doi.org/10.1016/j.jneumeth.2010.06.019
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:jg343@columbia.edu
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ethods are actually computing. They can also be sensitive to noise
Taxidis et al., 2010; Winterhalder et al., 2005). Furthermore, such

ethods generally do not provide estimates of the time lag between
rain areas.

Here we report a novel and mathematically straightforward
ethod to estimate the lag between two brain areas that does

ot require spikes and that can be applied to datasets in which
nly LFPs have been acquired. The method requires that functional
onnectivity between the examined structures be accompanied
y reasonably coherent activity within a specific frequency range.
he method consists of determining the position (or “lag”) of the
eak of the cross-correlation of the amplitude envelopes of the
FPs after filtering for the frequency range of interest. Lastly, a
on-parametric signed-rank test is performed to verify if the dis-
ribution of lags obtained from multiple experiments differs from
ero.

To investigate its validity, this method was applied to a
ataset in which both spikes and LFPs were recorded from the
edial prefrontal cortex (mPFC), while only LFPs were sam-

led from the ventral hippocampus (vHPC). These areas were
hosen because there is a unidirectional projection from the
HPC to the mPFC (Parent et al., 2009; Verwer et al., 1997),
uggesting that activity in the vHPC should lead that in the
PFC. Moreover, we have shown theta-frequency (4–12 Hz) coher-

nce between these structures during behavior (Adhikari et al.,
010), suggesting that directionality analysis can be performed in
his frequency range with the amplitude cross-correlation mea-
ure.

Using the amplitude cross-correlation method, we demonstrate
hat the vHPC leads the mPFC in the theta-frequency range, with a
ag consistent with estimates of the conduction delay of this path-

ay. Furthermore, there is good agreement between vHPC–mPFC
ags calculated with this method and those calculated from phase
ocking of mPFC spikes to vHPC theta oscillations. Finally, a con-
istent lag between the vHPC and the mPFC was only found in
he theta, but not in the delta and gamma-frequency ranges, in
ine with studies suggesting that theta-frequency oscillations drive
unctional connectivity between the hippocampus and the mPFC
Adhikari et al., 2010; Jones and Wilson, 2005; Siapas et al., 2005).
he current method was also compared to partial directed coher-
nce (PDC), an existing method to calculate the directionality of
unctional connectivity with LFPs. This method, similarly to the
mplitude cross-correlation method, also demonstrated that the
HPC leads the mPFC in the theta-range. To further compare the
wo methods, both were applied to simulations in which pink noise
as added to biological signals. Strikingly, PDC was more suscepti-

le to errors induced by noise than the amplitude cross-correlation
ethod. These results show that the cross-correlation of the ampli-

ude of filtered field potentials may provide a valid, relatively robust
stimation of the lag and the directionality of information flow
cross brain areas.

. Materials and methods

.1. Animals

Three to six month old male wildtype 129Sv/Ev mice were
btained from Taconic (Germantown, NY, USA). Seventeen mice
ere used for the simultaneous mPFC and vHPC recordings. Sixteen
ice were used for the simultaneous vHPC and dorsal hippocampus
dHPC) recordings. An additional cohort of five C57/Bl6 mice bred at
olumbia University was used for the simultaneous dHPC and mPFC
ecordings, from which mPFC single units were isolated. The proce-
ures described here were conducted in accordance with National

nstitutes of Health regulations and approved by the Columbia
ce Methods 191 (2010) 191–200

University and New York State Psychiatric Institute Institutional
Animal Care and Use Committees.

2.2. Surgery and microdrive construction

Custom microdrives were constructed using interface boards
(EIB-16, Neuralynx, Bozeman MT) fastened to a Teflon platform, as
described previously (Adhikari et al., 2010). Briefly, animals were
anesthetized with ketamine and xylazine (165 and 5.5 mg/kg, in
saline) and secured in a stereotactic apparatus (Kopf Instruments,
Tujunga, CA). Screws were implanted on the posterior and anterior
portions of the skull to serve as ground and reference, respectively.
mPFC electrodes were implanted in the deep layers (V/VI) of the
prelimbic cortex, at +1.65 mm anterior, 0.5 mm lateral and 1.5 mm
depth, relative to bregma. vHPC electrodes were implanted in the
CA1 region at 3.16 mm posterior, 3.0 mm lateral and 4.2 mm depth,
and dHPC electrodes were targeted to 1.94 posterior, 1.5 lateral and
1.3 mm depth. Depth was measured relative to brain surface.

2.3. Behavioral protocol

Animals were permitted to recover for at least one week or until
regaining pre-surgery body weight. Mice were then exposed to a
small rectangular box in the dark, in which they foraged for pellets
for 10 min for the mPFC–vHPC and vHPC–dHPC datasets. Mice per-
formed an alternation task in a T-shaped maze for the dHPC–mPFC
dataset as described in (Sigurdsson et al., 2010).

2.4. Data acquisition

Recordings were obtained via a unitary gain head-stage pream-
plifier (HS-16; Neuralynx) attached to a fine wire cable suspended
on a pulley so as not to add any weight to the animal’s head. LFPs
were recorded against a reference screw located at the anterior por-
tion of the skull. Field potential signals were amplified, bandpass
filtered (1–1000 Hz) and acquired at 1893 Hz. Multiunit activity
from the mPFC was recorded simultaneously from the same elec-
trodes used to obtain LFPs; multiunit signals were bandpass filtered
(600–6000 Hz) and recorded at 32 kHz. Events exceeding a thresh-
old of 40 �V were selected for analysis of phase-locking to theta
(see below). Both LFP and multiunit data were acquired by a Lynx 8
programmable amplifier (Neuralynx) on a personal computer run-
ning Cheetah data acquisition software (Neuralynx). The animal’s
position was obtained by overhead video tracking (30 Hz) of two
light-emitting diodes affixed to the head stage.

2.5. Cross-correlation analysis

2.5.1. Band-pass filtering
Data was imported into Matlab for analysis using custom-

written software. To calculate the lag between the vHPC and the
mPFC, signals were initially band-pass filtered between 7 and 12 Hz.
A finite impulse response filter of order n, where n is the sampling
frequency, was implemented with a Hamming window, utilizing
the MATLAB function fir1.

2.5.2. Instantaneous amplitude using the Hilbert transform
The Hilbert transform of each signal was computed with the

MATLAB function hilbert. The output of the Hilbert transform is a
vector containing complex numbers that has the same number of
elements as the input signal. The real portion of the complex num-

ber is the input itself, while the imaginary part is the input LFP
shifted by 90◦ (�/2 radians). The absolute magnitude of the com-
plex number at a given time point is the power of the filtered signal
at that sample. The magnitude of a complex number is the length
of the vector in the complex plane.
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ig. 1. Calculating lags using the amplitude cross-correlation method. (A and B) Sim
ehaving mouse (C and D) Traces in (A) and (B), filtered for theta-frequency activit
ransform (grey). (E) The instantaneous amplitudes of the theta-filtered vHPC (red) a
f the example amplitude traces shown in (E) (grey). The amplitude cross-correlati

All the results shown in the main text (Figs. 1–4) were obtained
y using the Hilbert transform to calculate the instantaneous ampli-
udes of the LFPs. Importantly, these results are not dependent on
he specific method used to calculate instantaneous amplitudes, as
hey were reproduced using the Gabor Transform (Supplemental
ig. 1) (Le Van Quyen et al., 2001).

.5.3. Cross-correlation of the instantaneous amplitudes
After the instantaneous amplitude for all the points in the vHPC

nd mPFC signals was calculated, the cross-correlation between
he amplitudes of the two signals was computed with the MAT-
AB function xcorr, over lags ranging from +0.1 to −0.1 s. The
ean amplitude was first subtracted from each vector prior to

ross-correlating them, as the DC component of a signal has no rele-
ance for a cross-correlation. The lag at which the cross-correlation
eaked was then determined. The significance of each vHPC–mPFC
heta amplitude cross-correlation was verified before inclusion in
dditional analyses using a bootstrap procedure. mPFC and vHPC
heta-amplitude envelopes were randomly shifted 5–10 s relative
o each other 1000 times. The shifted amplitude envelopes were
hen cross-correlated, yielding a distribution of cross-correlation
eaks expected by chance. The original cross-correlation was con-
idered significant if its peak value was greater than 95% of these
andomly generated cross-correlation peaks. The peaks of the
PFC–vHPC theta-filtered amplitude envelope cross-correlations

f all 17 animals were significant by this criterion.

.5.4. Distribution of cross-correlation lags
After cross-correlations of the filtered amplitude vectors were
omputed, the distribution of the lags at which the cross-
orrelation peaks occur was obtained. Wilcoxon’s non-parametric
ank sum test was performed on the sample of lags to verify
hether the mean of the distribution was significantly different

rom zero.
eous local field potential recordings obtained from the vHPC (A) and mPFC (B) of a
12 Hz) (red), overlaid with the instantaneous amplitude obtained from the Hilbert
FC (blue) signals shown in (C) and (D) overlaid for comparison. (F) Cross-correlation
m the entire recording session is overlaid (black). The peaks are indicated by stars.

In the convention used in the current work, a negative lag indi-
cates that the vHPC leads the other brain area. Custom written
Matlab code to execute this analysis is included in Supplemental
text.

2.6. Phase-locking analysis

In order to verify if the above method produces reliable esti-
mates of the lag between two brain areas, the results were
compared with an alternative method. In this method, the strength
of phase locking of mPFC spikes to vHPC theta oscillations was com-
puted after shifting the spike train by positive or negative shifts.
Multiunit spikes represent all the spikes that exceeded 40 �V,
whereas spikes for single unit measurements were clustered offline
using spike sort 3-D (Neuralynx). Phase locking of spikes to oscilla-
tions was assessed by calculating the mean resultant length vector
(MRL), a measure from which Rayleigh’s z statistic of circular uni-
formity is derived (Sigurdsson et al., 2010).

To determine whether spikes were significantly phase-locked
to theta, theta phases of LFPs were determined through the Hilbert
transform, and a phase was assigned to each spike based on the
time of the spike’s occurrence. The phase is obtained by calculat-
ing the angle of the absolute magnitude of the Hilbert transform
output. A phase of zero refers to the trough of the theta cycle. To
determine the lag between multiunit activity and theta oscillations
in each area, phase locking was calculated for 40 different temporal
offsets for each multiunit recording, ranging from−100 to +100 ms.
Recordings with significant Bonferroni-corrected phase locking in
at least one of the shifts were used for the analysis in Fig. 2.
2.7. Partial directed coherence

To compare the current method to an existing method of calcu-
lating directionality between LFPs, we analyzed our dataset using
partial directed coherence (PDC). PDC is a frequency-domain rep-
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Fig. 2. Estimation of lags between the vHPC and the mPFC using the amplitude cross-correlation (A) and phase locking (B) methods. Upper panels: vHPC-mPFC lag estimate
from single recording sessions using the amplitude cross-correlation (A), and the effect of shifting the mPFC spike train on the strength of phase-locking (MRL) to vHPC
theta oscillations (B). Stars mark the peaks. Middle panels: normalized color plots of amplitude cross-correlations from 17 recordings (A) and phase-locking shifts from 30
recordings (B). Warmer colors indicate higher cross-correlation peaks or greater phase-locking strength. Each row corresponds to a single LFP (A) or multiunit (B) recording.
Rows are arranged according to the peak lag. Arrows mark the rows representing the data shown in the upper panels. The lags at which the cross-correlation (A, middle panel)
and phase-locking (B, middle panel) peaks occur are marked with white dots. Lower panels: histograms showing the distribution of peak lags calculated with each method.
The distribution of lags is significantly negative for both the amplitude cross-correlation (p < 0.05, Wilcoxon rank-sum test, mean lag −28±16.7 ms, median =−9.5 ms, n = 17
recordings) and phase-locking (p < 0.05 for a paired Wilcoxon’s rank sum test, mean lag −24.5±15.7 ms, median =−32 ms, n = 30 recordings). Means and medians of the lag
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istributions are indicated, respectively, by black and red arrowheads. (C) Lag estima
ltering for delta (1–4 Hz), theta (7–12 Hz), low gamma (30–50 Hz) and high gamm
p < 0.01 for a paired Wilcoxon’s rank sum test. In all panels, negative lags indicate

esentation of Granger Causality. Given two time series X1(t) and
2(t), X2(t) is said to Granger-cause X1(t) if knowledge of the past of
2(t) improves the prediction of X1(t) beyond how much the past of
2 can predict itself in the present. X2(t) may Granger-cause X1(t)
ithout X1(t) Granger-causing X2(t), in which case the predominant
irectionality would be from X2 to X1 (X1←X2). It is important to
ote that Granger-causation is directly related only to an increase

n predictability and not to causality per se or to precedence in time
f one signal relative to the other.

In order to compute Granger Causality of an m-variate time-
eries, a vector autoregressive model was fit to the process, as
hown below and reported previously in more detail (Taxidis et
l., 2010):

x1(t)
⎤

p∑
⎡

x1(t − r)
⎤ ⎡

u1(t)
⎤

...
xm(t)

⎦ =
r=1

Ar ⎣ ...
xm(t − r)

⎦+⎣ ...
um(t)

⎦

ere, the model was fit with MATLAB’s ARFIT toolbox, with m = 2, as
nly two time-series were considered (vHPC and mPFC raw LFPs).
e frequency-specific. Lags were calculated by cross-correlating the amplitudes after
100 Hz) frequency ranges. Data are presented as means ±95% confidence intervals.
e vHPC leads the mPFC.

In the above equation, u1(t) . . . um(t) are the residuals of the
model. The residuals were analyzed to verify if they described a
white noise process. As expected, the residuals were normally dis-
tributed and had the same power at all frequencies. The order of
the process, p, determines how many past lags are considered in
the model, and was selected using Schwarz’s Bayesian Criterion.
N most animals the order chosen was approximately 90 samples,
corresponding to 47 ms. This model order is appropriate to detect
directionality in the vHPC–mPFC circuit, as it represents a period
of time larger than the conduction delay of the pathway (approx-
imately 16 ms). To obtain a frequency-domain representation of
the data, the Fourier transform of the coefficients of the vector
autoregressive model was taken, which for a given frequency f, was
computed as shown:

p

A(f ) =
∑
r=1

Are−2�ifr

PDC is an estimate of the strength of the directionality between
the signals for each frequency. PDC for time series j to time series i
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Fig. 3. Estimation of lags between dHPC and mPFC using the amplitude cross-correlation and phase locking methods. (A) dHPC-mPFC lag estimated from a single recording
session by crosscorrelating the amplitudes of theta-filtered traces. Note that the peak occurs at a negative lag, indicating that the dHPC leads the mPFC in the theta-range.
(B) Effect of shifting an mPFC spike train from a single unit on the strength of phase-locking (MRL). The plot shows that this mPFC single unit phase locks best to dHPC theta
of the past, in agreement with the directionality shown in (A). Diamonds denote the peaks in both (A) and (B). (C) Normalized color plots of amplitude cross-correlations
from 5 recordings and phase-locking shifts from 62 mPFC single units (D). Warmer colors indicate higher cross-correlation peaks or greater phase-locking strength. Each
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ow corresponds to a single LFP (C) or single unit (D) recording. Rows are arrange
pper panels. (E and F) Histograms showing the distribution of peak lags calculated
ross-correlation (E) (p < 0.05, Wilcoxon rank sum test, mean lag −15.4±7.9 ms, n =
est, mean lag −20.2±5.8 ms, n = 30 recordings). Means and medians of the lag dist

t frequency f (represented as |�i← j(f)|), was calculated as shown
elow, using custom MATLAB routines provided by B. Lau and A.
aez (Columbia University).

�i← j(f )| = |Āij(f )|√∑
k|Ākj(f )|2

,

here k varies from 1 to m (the number of time-series being
odeled), Ā(f ) = I − A(f ), and I is the identity matrix. The denom-

nator normalizes PDC for each frequency, such that PDC values
all between 0 and 1. PDC values at a given frequency attempt
o estimate the strength of the directionality (or improvement in
rediction) between the time-series j(t) and i(t) at that frequency.

.8. Simulations with pink noise

.8.1. Generation of pink noise
In order to verify if the amplitude cross-correlation method is

ore robust than PDC to artifacts induced by noise in the signal,

imulations were used to test both methods by adding noise to the
ignals. Pink noise (power falls with 1/f, where f is the frequency)
as used instead of white noise (same power for all f), because
oise in LFPs generally has a 1/f spectrum. Pink noise was gen-
rated by passing Gaussian zero-mean white noise through a 1/f
rding to the peak lag. Arrows mark the rows representing the data shown in the
ach method. The distribution of lags is significantly negative for both the amplitude
ordings) and phase-locking method (F) (p < 0.003 for a paired Wilcoxon’s rank sum
ons are indicated, respectively, by black and red arrowheads.

filter. As expected, the power spectra P(f) of the resulting process
was very well fit by the formula P(f) = P(f0)*(1/f), where P(f0) is the
power at the lowest frequency. To compare the resilience of the
current method with PDC to pink noise, two types of simulations
were performed.

2.8.2. Addition of pink noise of the same amplitude to both LFPs
In the first simulation, two copies of the same theta-filtered

trace were shifted relative to each other by 28 ms to induce
a well-defined lag. 28 ms was chosen because it is the mean
vHPC–mPFC lag calculated by the amplitude cross-correlation
method. Pink noise was then generated independently and added
to each signal in 500 simulations at each of ten different noise
levels, corresponding to signal-to-noise power ratios of 1 to 0.2.
The amplitude cross-correlation method and PDC were then used
to calculate directionality between the signals for each simula-
tion.
2.8.3. Addition of pink noise of different amplitudes to the leading
LFP

For the second simulation experiment, two theta-filtered seg-
ments of simultaneously recorded vHPC and mPFC signals were
used. As indicated by the arrows in Fig, 7A, in these traces, the vHPC
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Fig. 4. Application of the amplitude cross-correlation method to bidirectionally
connected areas. (A) A representative 15-second theta amplitude cross-correlation
over time for the vHPC-mPFC is shown. Warmer colors correspond to higher cross-
correlation values and white points mark the peak of the cross-correlation for each
time window. Note that consistent with the existence of a unidirectional monosy-
naptic projection from the vHPC to the mPFC, the peaks of the cross-correlation fall
primarily on negative lags for the vHPC-mPFC cross-correlation, indicating that the
vHPC leads the mPFC. (B) Same as (A), but for simultaneously recorded vHPC and
dHPC traces. In agreement with the existence of bidirectional monosynaptic pro-
jections between the vHPC and dHPC, at different time points the cross-correlation
peaks at positive or negative lags, presumably reflecting periods in which the vHPC
is leading or lagging relative to the dHPC, respectively. (A and B) Cross-correlations
were calculated in 8 s windows with 97% overlap between successive windows.
(C) Histogram of the lags at which the cross-correlation peaks occur for the entire
10 min recording from which the data plotted in (A) was obtained show that the
distribution of vHPC-mPFC lags has a negative mean (p < 0.005, Wilcoxon’s test),
while the distribution of vHPC-dHPC lags (D) is not significantly different from zero
(p < 0.72, Wilcoxon’s test). (C and D) Each count of the histogram refers to one 8 s
window in which the cross-correlation was computed. The distribution of the mean
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HPC-dHPC lag for each animal is shown in (E), and it is not significantly different
rom zero. Each count in the histogram corresponds to the mean lag of one animal. In
C–E), red and black arrowheads indicate the means and medians of the distribution,
espectively.

learly leads the mPFC. In each simulation, pink noise of small but
xed amplitude was added to the mPFC signal, while noise traces
f varying amplitudes were added to the vHPC. The power of the
oise added to the vHPC was varied from 0.1 to 4-fold the power of
he noise added to the mPFC. For each of the six noise levels added
o the vHPC, 500 simulations were run, in which both vHPC and

PFC noise was newly generated. After adding noise to the signals,
he directionality between the two signals was calculated using the
mplitude cross-correlation method and PDC.

.9. Statistics

Wilcoxon’s two-tailed signed-rank non-parametric test was
sed throughout. p < 0.05 was considered statistically significant.

.10. Histology
Upon the completion of recording, animals were deeply anes-
hetized and electrolytic lesions were made to determine the
osition of the electrode tips. Lastly, animals were perfused with
ormalin. Brain sections were mounted on slides to visualize and
hotograph lesions.
ce Methods 191 (2010) 191–200

3. Results

3.1. Computation of the lag between two LFPs by amplitude
cross-correlation

Each step of the method used to estimate the lag between two
brain regions from LFPs is illustrated in Fig. 1. Examples of simul-
taneously recorded traces from the vHPC and mPFC are shown in
Fig. 1A and B. The middle panels (Fig. 1C and D) show the same
traces after filtering the signals in the theta-range (7–12 Hz). This
frequency range was chosen because it is the predominant hip-
pocampal oscillation in the awake moving rodent (Buzsaki, 2002),
and previous reports have suggested that hippocampal activity in
the theta-range may be propagated to the mPFC (Siapas et al., 2005).
Note that the amplitude of the theta-filtered traces varies consider-
ably across time. In order to obtain a reliable measure of the signal’s
amplitude with high temporal resolution, the Hilbert transform of
the LFPs were calculated. The absolute magnitude of the Hilbert
transform provides the amplitude of the signal for each time point
at which the LFP was recorded. The amplitude traces (Fig. 1C and
D, grey traces) reveal the existence of a temporal microstructure
that reflects increasing and decreasing theta oscillation power and
is not readily apparent in the raw LFPs. Careful visual inspection
of Fig. 1E suggests that the peaks in vHPC theta amplitude precede
those of the mPFC. Accordingly, the cross-correlation of the two
amplitude traces (Fig. 1F, grey trace) has a peak at a negative lag,
indicating that theta activity in the vHPC leads that in the mPFC.

Cross-correlations of the amplitudes of the theta-filtered LFPs
from 17 mice are shown in Fig. 2. Note that most of the
curves peak at a negative lag (dark red bands in Fig. 2A). The
mean of the distribution was negative (mean lag =−28.1±16.7 ms,
median =−9.5 ms) and significantly different from zero (p < 0.01,
Wilcoxon’s rank sum test). The narrow peak of the vHPC–mPFC lag
distribution (Fig. 2A, lower panel) suggests that the estimate of the
lag calculated through this method is consistent across animals.
Although the distribution of lags appears to be bimodal, it is still
significantly negative if the points with large negative lags (<50 ms)
are excluded. Finally, there was no correlation of the computed lag
with the layer from which vHPC signals were recorded (data not
shown).

3.2. Test of the amplitude cross-correlation method

To further test the validity of this method, the lag estimated
with the amplitude cross-correlation method was compared with
the lag computed through a previously published method (Siapas
et al., 2005; Sigurdsson et al., 2010) that uses spikes and LFPs. In
this method, the strength of phase locking of mPFC spikes to vHPC
theta oscillations is calculated after shifting the spike train both for-
wards and backwards in time. If neural activity in the vHPC leads
that in the mPFC, phase locking of mPFC spikes to vHPC field poten-
tials would be maximal when the spike train is shifted slightly to
the past. Indeed, in line with previous reports (Siapas et al., 2005;
Sigurdsson et al., 2010), mPFC spikes phase locked to hippocampal
theta oscillations more robustly when shifted to the past (n = 30
multiunit recordings from 12 mice, mean shift =−24.5±15.7 ms,
p < 0.05, Wilcoxon’s rank sum test). Furthermore, the vHPC–mPFC
lag calculated with the phase locking and the cross-correlation

methods are not significantly different from each other or from the
conduction delay (−16 ms) of the vHPC–mPFC pathway (Thierry
et al., 2000) (p > 0.05, Wilcoxon’s signed-rank test) indicating that
both methods may provide valid estimates of the lag between the
vHPC and the mPFC.
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.3. The amplitude cross-correlation method is frequency-specific

The above results indicate that the amplitude cross-correlation
ethod can estimate lags that are in good agreement with

he phase locking method and with the conduction delay of
he vHPC–mPFC pathway. To further evaluate the amplitude
ross-correlation method, vHPC–mPFC lags were calculated across
ultiple frequency ranges. We applied the amplitude cross-

orrelation method after band-pass filtering the LFPs in the delta
1–4 Hz), theta (7–12 Hz), low gamma (30–50 Hz) and high gamma
50–100 Hz) frequency bands (Fig. 2C). Strikingly, a consistent and
ignificant lag between the vHPC and the mPFC was only found at
he theta-range.

.4. Applying the amplitude cross-correlation to areas that are
idirectionally connected

The above results suggest that the amplitude cross-correlation
ethod can be applied to areas that have a unidirectional monosy-

aptic connection. However, often researchers wish to study the
irectionality of functional connectivity in areas that have indi-
ect or bidirectional connections. To explore whether the method
an be generalized to these situations, we applied it to simulta-
eous recordings from the dHPC and mPFC, which are indirectly
onnected, and from the vHPC and dHPC, which are directly and
idirectionally connected.

The dHPC and mPFC are bidirectionally and indirectly connected
hrough the rhinal cortices, the vHPC and the nucleus reuniens
f the thalamus (Burwell and Witter, 2002; Hoover and Vertes,
007). In the dHCP–mPFC dataset, LFPs were sampled from the
HPC and single units and LFPs were recorded through stereotrodes
rom the mPFC. An example dHPC–mPFC theta amplitude cross-
orrelation (Fig. 3A) shows that the peak occurs at a negative
ag, suggesting that dHPC activity in the theta-range leads the

PFC. Similar profiles were found in each of five animals (Fig. 3B),
nd the population of lags obtained by this method (Fig. 3C)
as a significantly negative mean (p < 0.05, Wilcoxon’s test, mean

ag =−15.4±7.9 ms). As in the vHPC–mPFC dataset, we also cal-
ulated lags using the spike-shift method in the same mice. A
epresentative example of the effect of shifting the spike train rela-
ive to the dHPC LFP on the phase-locking strength (Fig. 3B) shows
hat this unit phase locks more robustly to dHPC theta the past

optimal lag =−17 ms). The distribution of optimal lags of for all
he single units recorded (Fig. 3D and F) reveals that the mean of
his distribution is significantly negative (p < 0.01, Wilcoxon’s test,

ean lag =−20.2±5.8 ms), in rough agreement with the lag calcu-
ated by the amplitude cross-correlation method and with previous
ge. (A) Representative example of PDC on simultaneously recorded vHPC and mPFC
HPC to mPFC direction. (B) Average PDC across animals is plotted. Note that in the
e vHPC to mPFC direction. Shaded areas indicate SEMs.

reports (Siapas et al., 2005; Sigurdsson et al., 2010). These data sug-
gest that the amplitude cross-correlation method can be used to
estimate the directionality of functional connectivity and the lag
across brain areas that have indirect, bidirectional connections.

In an awake-behaving rodent, the predominant direction of
information flow is thought to be from the hippocampus to the
cortex (Sigurdsson et al., 2010). Accordingly, we found that in both
vHPC–mPFC and in the dHPC–mPFC datasets, hippocampal activity
leads the mPFC. However, in many cases the predominant direc-
tion of information flow between the brain areas recorded may
change across time (Gregoriou et al., 2009). To study the results
of applying the method in such cases, we recorded LFPs simul-
taneously from the vHPC, dHPC and mPFC, and calculated lags
from successive windows across time. In line with the findings
described above for the vHPC-mPFC recordings, a negative lag in
the theta-filtered amplitude cross-correlation was present across
time (Fig. 4A), with peaks occurring consistently at negative lags
(mean lag −12.5 ms, p < 0.001, Wilcoxon’s test; Fig. 4A and C).
Conversely, the lag between vHPC and dHPC varied across time,
between positive and negative lags (Fig. 4B). The mean lag between
these areas connected monosynaptically and bidirectionally did not
differ from zero across time (Fig. 4D, mean lag−3.3 ms in this exam-
ple animal; histogram has one count per time window) and across
animals (Fig. 4E, mean lag−8.8±10.2 ms, histogram has one count
per animal). This result suggests that when applied to bidirection-
ally connected areas, the amplitude cross-correlation method can
reveal the temporal dynamics of the directionality of the circuit, by
indicating which area is leading in a given time window.

In summary, these results demonstrate the utility of the ampli-
tude cross-correlation method in examining bidirectionally and
indirectly connected brain regions, and further demonstrate its
utility in examining how directionality may change across time.

3.5. Comparison of amplitude cross-correlation method with
partial directed coherence

In order to compare the results of the amplitude cross-
correlation with an existing method that calculates directionality
with LFPs, we applied partial directed coherence (PDC) to the
raw signals of the vHPC–mPFC dataset. Consistent with the
results obtained using amplitude cross-correlation and phase-
locking methods, PDC values averaged across animals had peaks

in the theta-frequency range, and these peaks were significantly
greater for the vHPC to mPFC (Fig. 5B) direction than vice-
versa. This result is also in line with a previous analysis of
hippocampal–cortical connectivity with PDC in anesthetized rats
(Taxidis et al., 2010).
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Fig. 6. Partial directed coherence is more sensitive to noise than the amplitude cross-correlation method. (A) Two signals were created from the same two-second segment
of vHPC theta-filtered trace. One signal was shifted relative to the other by 28 ms (this is the mean delay between the vHPC and the mPFC calculated by the amplitude
cross-correlation method). Thus, the purple trace leads the blue trace with a lag of 28 ms. (B) Pink noise was generated randomly and added to both signals. Ten different
levels of noise were added, such that the fraction of theta power relative to total power in the signals after adding noise was varied from 1 to 0.2. In the example shown, theta
power/total power = 0.67. (C) The amplitude cross-correlation method was applied to verify the directionality after adding pink noise to both signals, in 500 simulations in
which noise was newly generated, at 10 different amplitudes. Calculation of the lag by the cross-correlation method for three representative simulations is shown. Points
with negative lags have the expected directionality. The cross-correlation method fails only when high levels of noise are added, as shown by the points with positive lags
with low theta power to total power ratios. Note that the x-axis is reversed, such that higher values (high signal to noise ratios) are on the left. (D) Same as in (C), but for PDC
calculated from the identical simulations. Correct directionality is reflected as negative values on the y-axis. PDC1→2 indicates PDC in the purple trace in A causing the blue
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race. Note that this method does not consistently indicate that the purple trace lead
oise level at which each method first failed, averaged across 500 simulations. The
ethod (p < 0.0001, rank sum test). (F) For five noise levels, the percentage of simula

ad a significantly higher failure rate than the amplitude cross-correlation method

To compare the two methods, we used simulations to analyze
ow sensitive each method is to noise. We first studied the amount
f noise that must be added to a signal to prevent each method
rom identifying the directionality between two signals where the
nderlying directionality is known. To this end, a 2-s segment
f a randomly chosen vHPC recording was filtered in the theta-
requency range. A second signal was then created by shifting the
riginal signal by 28 ms, resulting in two identical signals sepa-
ated by a defined lag (Fig. 6A). A 28 ms shift was chosen because it
s the average lag calculated for the vHPC–mPFC pathway with the
ross-correlation method. Varying levels of pink noise were then
enerated (10 levels of noise) and added to both signals in 500
ndependently generated simulations for each noise level (Fig. 6B).
or each simulation, the directionality was then calculated using
oth PDC and the amplitude cross-correlation methods. Fig. 6C and
shows the results of three example simulations at each of the 10

oise levels (the same three simulations are shown in both pan-
ls). In these examples, the amplitude cross-correlation method
orrectly quantified directionality and lag at noise levels at which
DC failed to identify directionality. In general, across the popula-
ion of simulations, PDC failed to identify the correct directionality
t lower levels of noise than did the amplitude cross-correlation
ethod (p < 0.05, Fisher’s exact test; Fig. 6E and F).
Previous reports have demonstrated that PDC can incorrectly

nd directionality between signals when the two signals have dif-
erent variances (Taxidis et al., 2010; Winterhalder et al., 2005). We
herefore asked whether the cross-correlation method is similarly

ensitive to the presence of different levels of noise across two sig-
als. To do so, we first selected a 1-min sample of simultaneously
ecorded vHPC and mPFC signals. Both signals were filtered for the
heta-range. Short segments of the samples are shown in Fig. 7A
Black traces). Note that the vHPC clearly leads the mPFC. Next, we
blue trace even after adding only moderate amounts of noise to the signal. (E) Mean
ethod on average fails at lower noise levels than the amplitude cross-correlation

in which the wrong directionality was calculated is shown. At every noise level PDC
05, Fisher’s exact test). All PDC values shown are averages across the theta-range.

added a constant and modest amount of pink noise to the mPFC
signal, while adding varying amounts of noise to the vHPC signal
(grey traces). The directionality between the two signals was then
calculated using both PDC and amplitude cross-correlation meth-
ods. Noise was independently generated 500 times for each of the
six levels of noise shown. Regardless of the ratio of noise added
to the two signals, the amplitude cross-correlation method consis-
tently indicated that the mPFC follows the vHPC. While increasing
vHPC noise increased the variability in the detected lags, there
was no effect of increasing vHPC noise on the mean estimated
lag (Fig. 7B, p < 0.72, one-way ANOVA). In dramatic contrast to the
amplitude cross-correlation method, the directionality indicated
by PDC was dependent on the amount of noise added to the vHPC
signal (Fig. 7C). When the ratio of noise added to the vHPC sig-
nal was smaller or equal to that added to the mPFC, PDC correctly
identified the directionality. However, when the noise added to the
vHPC signal was larger than that added to the mPFC, PDC incor-
rectly calculated the reverse directionality. These results indicate
that PDC, but not the amplitude cross-correlation, is greatly biased
if different signals have different amounts of noise in them. In such
cases, PDC results suggest that the cleaner signal leads the noisier
signal, independently of the underlying directionality, in line with
previous reports (Taxidis et al., 2010; Winterhalder et al., 2005).
The amplitude cross-correlation is less precise but equally accurate
with the addition of differential amounts of noise.

While the PDC and amplitude cross-correlation methods both
show appropriate directionality in our dataset, these simulations

suggest that PDC may be less robust to noise than the amplitude
cross-correlation. Interestingly, a similar susceptibility to noise was
found with Granger causality, another multivariate autoregressive
model-dependent measure of directionality, in both types of sim-
ulations (Supplemental Fig. 2).
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Fig. 7. Partial directed coherence, but not the cross-correlation method, is biased if
one of the signals has different noise levels than the other signal. (A) Half-second
segments of 1-min long signals are shown. Black traces are theta-filtered traces from
the vHPC and mPFC. Note that the vHPC leads the mPFC in these traces, as indicated
by the black arrows. Grey traces were obtained after adding different levels of pink
noise to each of the filtered signals. In this example, the noise added to the vHPC is
four-fold greater than the mPFC noise. Across the simulations, the noise added to the
mPFC remained constant, while the noise added to the vHPC was varied from 0.1 to
4-fold of the noise added to the mPFC. Noise was generated in six increasing ampli-
tudes in 500 simulations and added to the vHPC. The signals were then analyzed
by the amplitude cross-correlation method (B) and PDC (C). (B) Boxplot shows the
median lags calculated by the amplitude cross-correlation method after different
amounts of noise were added to the vHPC signal while keeping constant the ampli-
tude of the noise added to the mPFC signal. The lag calculated by the amplitude
cross-correlation method remains negative, indicating that mPFC follows the vHPC,
even when the amount of noise added to the vHPC is greater than the mPFC noise.
Boxplots show the mean lag and the 25th and 75th percentiles of the distributions.
Whiskers indicate the range. (C) PDC was calculated for the same simulations used
in (B). Correct directionality (vHPC leading) is represented as negative values on the
y-axis (PDC v→m greater than PDC m→v, where v and m stand for vHPC and mPFC,
respectively). PDC indicates that the vHPC leads the vHPC only when the vHPC is
equally or less noisy than the mPFC. Note that PDC consistently indicates that the
less noisy signal leads the noisier signal, regardless of the underlying directional-
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correlation method only provides the overall directionality for
ty. In (B) and (C), the condition of equivalent noise levels in the two signals (VHPC
oise/mPFC noise = 1) is shown in red. All PDC values shown are averages across the
heta-range.

. Discussion

We report a novel, mathematically straightforward method
o calculate the lag in neural activity between two brain areas
tilizing multi-site LFP recordings. The method does not require

ampling of spikes. The present data indicate that the amplitude
ross-correlation method can estimate the principal direction of
unctional connectivity between two brain regions and provide

reliable and consistent estimate of the lag between them. We
ce Methods 191 (2010) 191–200 199

further demonstrate that in the hippocampal–prefrontal circuit,
the lag calculated with the amplitude cross-correlation method
is consistent with lags calculated through phase locking (Siapas
et al., 2005), and with the experimentally determined conduction
delay between the two areas (Thierry et al., 2000). Each method
indicates that the direction of functional connectivity is from the
vHPC to the mPFC. We further demonstrate that the amplitude
cross-correlation method can detect frequency-specific connectiv-
ity, and can identify indirect and bidirectional connectivity as well
as monosynaptic, unidirectional connectivity. Finally, we demon-
strate that the amplitude cross-correlation method is relatively
robust to added noise, when compared to existing methods of
determining directionality from LFPs.

The principal advantage of the method lies in its practical-
ity and theoretical simplicity. Estimating directionality and lag
using exclusively LFPs is of great value as LFP recordings are much
more straightforward to obtain than single unit spike data, espe-
cially simultaneously from multiple areas. While widely used and
straightforward methods for calculating directionality with LFPs
exist, they are limited. Direct cross-correlation of filtered or raw
signals, for example, can fail to produce reliable lag estimates
even in the presence of large, synchronous oscillations. This fail-
ure results from the potential for variable phase offsets in the
rhythms between the two LFPs (Supplemental Fig. 3), which does
not contaminate the amplitude cross-correlation. Instantaneous
phase difference is another method that has been used to calculate
directionality (Gregoriou et al., 2009), although it can be unclear
how to convert a phase difference in degrees into a lag in mil-
liseconds, as each area may oscillate in a different peak frequency.
For example, in the current data set, the mean phase difference
between mPFC and vHPC is 0.22 radians. However, as mPFC and
vHPC have different mean theta frequencies, converting this phase
difference to a time lag will produce different results depending
on whether mPFC or vHPC mean theta frequency is used to calcu-
late the lag, and there is no justification for choosing one of the
peak frequencies over the other. Furthermore, as phase is a circular
measure, phase difference calculations cannot determine if a dif-
ference of 60◦ indicates that signal 1 is leading signal 2 by 60◦ or if
it is lagging signal 2 by 300◦.

Mathematically more sophisticated methods to calculate the
directionality of functional connectivity across brain areas with
LFPs such as Granger causality and PDC also exist. These meth-
ods, while useful, are conceptually complex and not yet widely
accepted in the literature. Moreover, Granger causality and PDC
are not typically used to obtain lag estimates. As PDC and Granger
are based on fitting multivariate regression models to a dataset,
the data must conform to several constraints, such as having sta-
tionarity and a Gaussian distribution. Furthermore, the residuals
of the model must describe a white noise process (Cadotte et
al., 2010; Gregoriou et al., 2009). In contrast, the data does not
need to fulfill these conditions for the cross-correlation method
to be applicable. In fact, the non-stationarity in power over time
is precisely what is used to estimate directionality in the cross-
correlation method. There are, however, three main advantages of
PDC and Granger causality relative to our method. First, these meth-
ods can be applied to the entire frequency range at once, while
the amplitude cross-correlation needs to be separately calculated
for each frequency range and is therefore somewhat dependent
on the choice of filter boundaries and filter type. Second, PDC and
Granger causality provide a measure of the degree of functional
connectivity in both directions, whereas the amplitude cross-
a pair of areas. Third, if PDC and Granger causality are applied
to datasets in which three or more areas were recorded, they
will provide measures of functional connectivity for all possible
brain area pairs in a single step. The cross-correlation method
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ould have to be applied in separate steps for each pair of brain
reas.

In order to compare PDC and the cross-correlation method we
pplied both to our dataset. Importantly, both methods were in
ood agreement with each other and with the spike-shift phase-
ocking method, indicating that on average, across animals, the
HPC leads the mPFC. However, simulations with noise indicate
hat the amplitude cross-correlation method may be more robust to
ertain types of noise, compared to PDC. First, the cross-correlation
ethod is less sensitive when pink noise of equal amplitude is

dded to both signals. This result suggests that PDC is more likely
o not find directionality if the frequency band of interest has low
ower in one of the signals, as is often the case. Second, if one of
he signals has higher levels of noise than the other, PDC, but not
he cross-correlation method, tends to indicate that the less noisy
ignal leads the noisier signal, as reported elsewhere (Taxidis et al.,
010; Winterhalder et al., 2005). This is a relevant point to con-
ider, as the ratio of power in the frequency band of interest to
otal power can be widely different across brain areas. Although
hese simulations suggest the amplitude cross-correlation method
s more resilient to digitally added pink noise, further studies are
eeded to verify if this is the case in biological signals recorded in
oisy conditions.

Although the amplitude cross-correlation method may be appli-
able to many datasets, it does have limitations that will potentially
estrict its utility. For example, it may not always be clear on which
requency band the method should be applied. In these cases, sev-
ral steps can be taken to find the relevant frequency band at which
irectionality is present and is detectable. The most straightforward
ne is to use bands defined by prominent peaks in the coherence
r power spectra in the brain areas of interest. Knowledge of pre-
ious literature may also be of help. For instance, the observations
eported here rely on theta-frequency synchrony, which is known
o be prominent between the hippocampus and its targets. How-
ver, gamma-frequency synchrony can occur across functionally
onnected cortical regions (Hermer-Vazquez et al., 2007), rais-
ng the possibility that the method reported here may be of use
n evaluating cortico-cortical functional connectivity if applied
o this frequency range. Lastly, in the absence of candidate fre-
uency bands it is possible to apply the amplitude cross-correlation
ethod in successive frequency windows over a broad range, for

xample, from 1 to 100 Hz. Indeed, we have used such an unbi-
sed approach to show that the theta-range is the only frequency
and with a consistent and significant lag between the vHPC and
he mPFC across animals in our dataset (Supplemental Fig. 4).

It is important to note that like any method to estimate lag
r functional connectivity between areas, the amplitude cross-
orrelation method does not conclusively demonstrate a causal
elationship. These analyses indicate only that mPFC activity fol-
ows vHPC activity, and does not prove that mPFC activity is driven
y vHPC activity. Neither the current method nor the others men-
ioned here rule out the possibility that a third area drives both
he vHPC and mPFC with different lags. Nonetheless, evidence
f monosynaptic, unidirectional connectivity between the vHPC
nd mPFC has been demonstrated both anatomically (Parent et
l., 2009; Verwer et al., 1997) and physiologically, (Thierry et al.,
000), consistent with the notion, suggested by the amplitude
ross-correlation method, that the vHPC drives mPFC activity.
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